
 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 167
Research Publish Journals

FPGA Based Optimized Implementation of

Control Algorithm for Semi-active Suspension

Systems

Sanjay Eligar
1
, R M Banakar

2

12
 Department of Electronics & Communication

12
BVB College of Engineering & Technology, Hubli, India

Abstract: Historically system design approaches favored the use of digital signal processors to implement

controllers for embedded systems. Processor based implementation lack the speed advantage offered by custom

hardware and concurrent processing because of their sequential nature. In some applications using a DSP would

be overkill in design, and other approaches need to be explored. Custom hardware is an option where in the

implementation could be done using FPGA, ASIC or an SoC. FIRs are a major component of signal processing

applications and the design and implementation in FPGA of sigma 1 controller for semiactive suspension is

presented in this paper. Alternate architectures for multiplication are explored and results are presented. Since

multiplication by constant coefficients is needed for FIR implementation CSD notation is employed which

minimizes the number of non-zeros in the constant multiplier. The results indicate area savings up to 74% and

improvement is speed of computation by 7.2 times. Further research in this area needs to explore the possibility of

using transposed form of FIR structure and possibility of optimization in resources consumed.

Keywords: velocity estimation, FIR filters, CSD, multiplier, shifter.

I. INTRODUCTION

Semiactive suspension control is one of the leading areas of research in automotive sector, especially in the passenger

vehicle segment. The primary goal of the controller algorithm is to minimise the trade off between passenger comfort and

road handling which are presented in [1] along with passive and active suspension systems. The semi-active suspension is

chosen over other options because of the simplicity in design and efficiency in power. The control algorithm is designed

and validated at system level of design, but the actual implementation needs to be done in hardware. The semi-active

suspension controller application discussed here demands that the solution be of low cost and consume less power.

Implementation of control algorithms is done using special processors like a digital signal processor (DSP) which

provides software interface to fine tune the controller parameters on the fly [2]. The design and simulation of the

controller is done using system level software which may use the vehicle dynamics and the MR damper model in the

initial stages. Once the controller parameters are finalised, the validation is done using a rapid prototyping unit like the

dSPACE AutoBox [3] in which the controller is implemented using DSP as shown in Fig. 1.

Fig. 1. Controller validation using DSP development platform

 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 168
Research Publish Journals

After experimental validation the controller is then implemented on a dedicated DSP chip set based embedded system.

Thus, in controller formulations implemented using system level software there is a constraint of using an off-the shelf

DSP, which may be an overkill if simple controllers are needed. The solution is then to implement a custom hardware

without using the DSP. The flexibility in model based design comes at the cost of performance or speed of computation

since typically most of the algorithms use digital Finite-Impulse-Response (FIR) filters. FIR filters are characterised by

typical mathematical operations on sampled signals as shown in equation (1), where each output sample (y[n]) is the sum

of a finite number of weighted samples of the input signal and its delayed samples(x[n], x[n − 1]...x[n − k]). The weights

are the FIR coefficients (b0, b1...bN).

 [] ∑ []

 (1)

The computation of the output requires multiply and accumulate (MAC) arithmetic and delay elements along with

memory to store the coefficients in appropriate format. DSPs are special type of microprocessors which optimize the

MAC operations through a customized ALU and memory. DSPs are easily programmable using high-level languages and

the designer need not worry about architectural decisions. This approach is suitable if the sample rates are in the range of

a few kHz [4]. The instructions in a DSP are executed sequentially and hence limit the maximum speed of operation to a

few clock cycles. But such approaches are very generic and not suited if performance, area, cost and low power

dissipation are the criteria for design. FIR computation involves similar MAC operations, but the length of computation

depends on the number of taps in the filter. The algorithm slows down if the length of the filter increases, thereby slowing

down the throughput of the system.

To exploit the parallelism in the FIR computation a non sequential approach using dedicated hardware like an Application

Specific Integrated Circuit (ASIC) is also possible. The hardware is replicated based on the length of the filter, thereby

allowing a possibility of operating the system at highest possible sampling rate. This is achieved since the entire

computation can now be done in one clock cycle, instead of the sequential processing, as is the case with DSPs. Here the

architecture could be a full custom solution which aims to optimize the algorithm implementation based on needs of a

specific application. The only disadvantage is the lack of flexibility in the hardware once the architecture is frozen. The

advent of Field Programmable Gate Arrays (FPGA) in late 1990s allowed the designer to utilize the parallelism in

hardware and provide flexibility through reprogramming on the fly [5]. FPGAs are the better choice than DSPs for high

data rate applications up to a few Mbps and filters having larger lengths. The only disadvantage is the per unit cost of the

FPGA as well as a possibility of overkill in design.

This paper presents the implementation of the velocity estimation module of the sigma 1 controller in hardware. The

technical specifications of the design and the signal interfaces are discussed in section II along with the choice for data

representation. In section III the data representation and signal flow graph at the algorithmic level for the chosen

controller is presented. Section IV discusses the alternate solutions for implementing the MAC operations using

parallelism in hardware. The results are presented and analyzed in section V followed by conclusion.

The controller chosen is a variable structure controller of type sigma 1 as discussed in [6]. The formulation of the

controller is given in equation (2) which needs the difference between x2 and x4, where x2 is the un-sprung mass velocity

and x4 is the sprung mass velocity.

 ()

[()] (2)

One possible way of implementing is to sense the velocities using appropriate sensors and calculate the difference.

Usually LVDT sensors and accelerometers are used to sense displacement and acceleration respectively, velocity is then

estimated or calculated using either of these values. In either case the calculation needs to estimate the velocity and then

find the difference. The hardware used thus will be quite complex needing two sensors and two velocity estimators.

Instead the digital suspension displacement (x3) input is used to estimate the velocity, which in turn is the difference in

velocities of sprung mass and unsprung-mass (̇). This approach reduces the complexity in design and

implementation by using only one sensor and one velocity estimator. The controller design favours the use of

 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 169
Research Publish Journals

displacement sensor since it directly yields the velocity difference. The input to the controller is the suspension deflection

and the output is the power signal which feeds the magneto-rheological (MR) damper as shown in Fig. 2.

Fig. 2. Semiactive suspension system with the controller

Here d is the road disturbance velocity and x1 is the tyre displacement. The input to the controller is the sampled digital

values of x3 and the output is the analog voltage to the MR damper, which is either Vmax or 0V.

II. DESIGN SPECIFICATIONS

System level design and verification precedes the hardware design. The specifications at the hardware level evolve from

the system level specifications. The functionality of the blocks is decided at the system level and so are the interfaces

between them. Typical specifications to be considered are the word-size, data format, data-rate, resolution, tolerable

quantization error and expected range of input and intermediate digital outputs within the velocity estimator.

The internal structure of the semiactive suspension controller is shown in Fig. 3. The decision block either outputs an

analog voltage of Vmax or 0V based on the sign of the velocity difference as given in equation (2).

Fig. 3. Signal interfaces in controller

A passenger vehicle is fitted with either two or four of MR dampers with individual controllers, which need to be compact

and possibly implement the entire system in a single chip. The controller also needs to be fitted into a vehicle along with

interfaces for sensors. Considering all the factors mentioned here it is desirable to have a custom design for semi-active

suspension system which allows optimization at all levels of implementation.

The velocity estimator is implemented using a linear-phase FIR filter and the internal architecture is shown in Fig. 4. The

data representation has to take into consideration the accumulation in output value because of the MAC operations, but try

to retain an acceptable level of accuracy in the intermediate stages of computation. So the possibility of using different

precision within the system is explored here.

 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 170
Research Publish Journals

Fig. 4. Optimized architecture for FIR filter of length M=7

III. DATA REPRESENTATION

The data representation is done using either fixed-point or floating-point format. The critical factor in deciding the format

is the much greater computational power offered by floating-point DSPs [7]. DSPs using floating-point format are also

desirable because of the ease of use since real arithmetic can be implemented directly into floating-point hardware, while

arithmetic in fixed-point DSPs needs additional software routines that add to the development time. But floating-point

DSPs require complex internal circuitry with twice the size of data paths as compared to fixed-point DSPs thereby

increasing the cost of devices. The cost disadvantage is somewhat overshadowed by the advent of System on Chip (SoC)

integration of multiple DSPs into a single chip because of miniaturization of transistors. The ease of use advantage is also

applicable to a great extent to fixed-point DSPs with advent of efficient C compilers and exceptional tools that provide

code-execution visibility. So, the decision between fixed-point and floating-point now essentially boils down to the

whether floating-point arithmetic is needed by the data set of the target application. Floating-point DSPs offer greater

accuracy through single or double precision formats which use 32 and 64 bit representations respectively as per the IEEE

754 format. The range of values in the data set of a target application and the extent of tolerable errors induced due to

rounding-off and data representation decide the format to be used.

In the controller formulation discussed here, the computation of the control algorithm is carefully observed at the system

level of validation, where the output of the system swaps between either Vmax or 0V. The ranges of values observed for

the suspension displacement are −0.15667 to 0.123313 and for velocity difference are −2.69507 to 3.022631. The

precision in binary arithmetic will vary significantly from the precision of decimal arithmetic. The conversion itself will

introduce quantization errors into the computation, but that is something which cannot be avoided. The least computation

could be done using 8-bit data, but multiplication of two 8-bit data would produce a 16-bit data, and the result has to be

rounded off by either trimming the integer portion or truncating the fractional value. Since the design chosen here intends

to integrate the entire system onto a single chip without going for a software frontend, a more simple fixed-point

arithmetic is preferred. Looking into the range of values expected in the computation and also the accuracy required, two

types of fixed point notations are chosen which are Q15 (for internal computation) and Q3.12 (at the output of MAC

adders). Q15 data representation gives a range of −1 to 0.999969482421875 (8000h to 7FFFh) and Q3.12 gives a range of

−8 to 7.999755859375 (8000h to 7FFFh).

IV. FIR ARCHITECTURES

The data representation is chosen as a 16-bit fixed point format using Q15 and Q3.12 as discussed in section III. Once the

data type is chosen it is imperative that the mathematical computations that need to be done for velocity estimator

implementation be explored further. The predominant computational unit inside the controller is the velocity estimator

implemented as a linear phase FIR filter of length 7 as discussed in [8]. The filter coefficients are in the range

±0.94234994673082473. The optimised architecture that takes into account the anti-symmetry property of the design

shown in Fig. 4 depicts the computational requirements of the system. The combinational elements are essentially 16-bit

signed add/subtract and multiply, while the sequential elements are the 16-bit registers implementing a 1-bit delay at each

clock cycle. Based on the inputs from the system level design the adders in the MAC chain (A4 and A5) are implemented

 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 171
Research Publish Journals

using Q3.12 format, while all other adders and multipliers use Q15 format. This ensures that the internal data-path is

always of 16-bit and is optimised for maximum accuracy and minimum complexity.

The hardware resource requirements for multipliers are much greater than for adders. The area and power requirements

differ based on whether the target hardware is an ASIC or a FPGA. In order to minimise the cost of implementation the

area needs to be lesser which leads to optimization efforts in this domain. Digit serial systems process multiple numbers

of bits every clock cycle and are best suited for applications requiring moderate sample rate, where area and power

consumption are critical. The number of add operations required in a constant coefficient multiplication equals one less

than the number of non-zero bits in the constant coefficient. The initial design of the FIR filter is implemented using

simple multiply and accumulate operations using 16-bit booth multipliers and 16-bit adders. This is the most basic

architecture which does not optimize the multiplication operation. This architecture is referred to as „D1‟ and it does not

include recoding of the filter coefficients using CSD notation.

In order to further reduce the area and power consumption, the constant coefficient can be encoded such that it contains

the fewest number of non-zero bits which can be accomplished using “Canonic Signed Digit” (CSD) representation. CSD

code is a ternary number system with unique features which make it useful in certain DSP applications focussing on low-

power, efficient area and high-speed arithmetic. CSD is a unique way of representation and has two main properties: the

number of non-zero digits is minimal, no two consecutive digits are both non-zero which leads to a reduction in the

number of additions in arithmetic operations. CSD recoding enables the reduction in the number of partial products during

multiplications that must be calculated fast.

A W-bit CSD representation number A when multiplied by a variable X is represented as in equation (3) where the bits ai,

0 ≤ i ≤ W − 1 are either 0,1 or -1.

 () ∑

 (3)

The maximum number of non-zeros in a W-bit CSD number is () . Among the W-bit numbers in the range (-1,1)

the average number of nonzero bits is (). Hence on average, CSD numbers contain about 33% fewer

non-zero bits than a conventional 2‟s complement number representation [9].

The velocity estimator uses the 16-bit CSD representation for the three coefficients b0, b1 and b2. Both the 2‟s

complement and CSD representations are shown in Table I.

TABLE I: FIR FILTER COEFFICIENTS

Coefficient 2’s comp CSD

b0 0001001101101101 ̅ ̅ ̅

b1 1100101010111111 ̅ ̅ ̅ ̅ ̅

b2 0111100010011111 ̅ ̅

The reduction in number of additions in the velocity estimator computation depends on the reduction in the number of

non-zero bits in the filter coefficient representation which is listed in Table II.

TABLE II: HARDWARE COMPLEXITY REDUCTION IN USING CSD IMPLEMENTATION

Coefficient Non 0’s 2’s comp Non 0’s CSD % Reduction

b0 8 6 25.00

b1 11 6 45.45

b2 10 5 50.00

It is observed that there is an average reduction of 40.15% in the number of non-zeros which is a substantial reduction in

the number of additions required during multiplication by these constants. An example of the architecture for performing

multiplication of ([] []) using M1 as in Fig. 4 is shown in Fig. 5.

 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 172
Research Publish Journals

Fig. 5. CSD multiplier architecture

The number of adders and different shifters required for computation of CSD multiplication is given in Table III.

TABLE III: ADDERS AND SHIFTERS NEEDED FOR CSD IMPLEMENTATION

Multiplier Computes Adders Shifters

M1 ([] []) 5 6 (15,13,11,8,5,3)

M2 ([] []) 5 6 (15,9,7,5,3,1)

M3 ([] []) 4 4 (15,10,8,4)

Here the multiplier M1 requires 5 adders and 6 shifters of varying right shift proportions like „right-shift by 15‟ (>>15),

„right-shift by 13‟ and so on, till „right-shift by 3‟ as shown. The reason to indicate separate shifts is because of use of

multiple shifters, instead of a single shifter. If one uses a single shifter, then the execution of shift operations become

sequential in nature which is not concurrent processing, which was the initial reason to choose custom hardware over

programmable DSPs. Also, because of dedicated shifters needed for each sub-operation within a multiplier, these can be

hardwired for a particular shift. For eg., a barrel shifter needs a control input of „1111‟ for a >>15 operation, then instead

of using control inputs they can all be tied to logic „1‟. Similarly the shift control inputs of all shifters are hard wired.

Among the three multipliers (M1, M2, M3) M3 requires the least number of shift and add operations. The architecture

which uses barrel shifter with hard-wired control inputs is referred to as „D2‟.

The need for a custom shifter instead of generic or barrel shifter is explored further for optimization of design

architecture. A barrel shifter is designed for different magnitudes of left-shift, right-shift or rotate operations. The

functionality needed here is just a right-shift of a given fixed amount. Optimizing the circuit to design multiple custom

shifters is carried out and a total of 11 unique shifters (1,3,4,5,7,8,9,10,11,13,15) are designed and implemented. The FIR

filter that uses this design is referred to as „D3‟.

V. RESULTS AND DISCUSSION

The prototyping of the velocity estimator is done on a FPGA development board using multiple architectures as discussed

here. The design D1 is implemented using booth multipliers for computing the output of FIR filter in which the filter

coefficients are represented using Q15 notation as standard binary values. In designs D2 and D3, the coefficients are

represented using CSD notation and accordingly the multiplication is done using concurrent shift-add algorithms. All

shifters in D2 are implemented using the same barrel shifter, while in D3 custom shifters are used for each type of shift.

The results of synthesis of all the three architectures are demonstrated in Table IV.

TABLE IV: COMPARISON OF VELOCITY ESTIMATOR ARCHITECTURES

Parameter D1 D2 D3

Slice registers 244 435 435

Slice LUTs 2302 324 324

LUT FF pairs 2481 541 541

Adders/Subtractors 108 54 54

Latches 119 560 428

Multiplexers 135 960 272

Timing (ns) 31.845 3.877 3.877

 ISSN 2348-1218 (print)

International Journal of Interdisciplinary Research and Innovations ISSN 2348-1226 (online)
Vol. 6, Issue 4, pp: (167-173), Month: October - December 2018, Available at: www.researchpublish.com

 Page | 173
Research Publish Journals

The number of adders used up in D1 is 108, while in both D2 & D3 the number is 54. The results show that there is a 50%

reduction in the number of adders used for CSD computation as compared to the standard binary representation. Also in

terms of the area estimate the number of Registers, LUTs and FFs consumed in D1 is 5027 while in both D2 & D3 it is

1300, which indicates a 74% reduction in resources consumed for CSD implementation. Among D2 & D3 it is observed

that the number of latches and multiplexers used in D3 reduces to 700 from 1520 in D2, which is a further reduction of

54% if a custom shifter is used instead of a generic shifter. The timing analysis yields the minimum input interval between

two input samples. It is 31.845 ns for D1 while for D2 and D3 it is only 3.877 ns, which means that these two

architectures are 7.2 times faster as compared to a conventional binary fixed point multiplier.

The results demonstrate the huge savings in area for CSD implementations as well as huge improvement in performance

as compared to standard binary fixed point representations.

VI. CONCLUSION

The design and implementation in FPGA of sigma 1 controller for semiactive suspension is presented in this paper. It is

shown that velocity estimator is the primary component in the design which is implemented using a linear phase FIR filter

of length 7 for the given specifications. The system approach to implementation uses DSP based approach while it is

shown that there are benefits in using custom hardware. Among the custom hardware various architectures are presented

and implemented, namely D1, D2 and D3. D1 uses optimized structure of FIR with booth multiplier and standard fixed

point notations of Q15 and Q3.12. An alternate architecture to booth multiplier is the shift and add operation, the

complexity of which is entirely dependent on the number of non zeros in the input data. Since multiplication by constant

coefficients is needed for FIR implementation CSD notation is employed in D2 and D3 which minimises the number of

non zeros in the constant multiplier. The results indicate that designs D2 and D3 require 74% lesser area as compared to

D1. The implementation using custom shifter (D3) needs only 960 multiplexers as compared to a regular shifter which

consumes 272 multiplexers which is a further 71.6% reduction in design complexity. Finally in terms of speed of

computation both D2 and D3 are faster by 7.2 times as compared to D1. Further research in this area needs to explore the

possibility of using transposed form of FIR structure and replacing half the multipliers with NOT gates by exploiting the

anti-symmetry in design of linear-phase FIR filter.

REFERENCES

[1] S. Eligar and R. M. Banakar, “A survey on passive, active and semiactive automotive suspension systems and

analyzing tradeoffs in design of suspension systems,” International Conference on Recent Innovations in Electrical,

Electronics and Communication Engineering, 2018.

[2] G. Koch, E. Pellegrini, S. Spirk, and B. Lohmann, “Design and modeling of a quarter-vehicle test rig for active

suspension control,” Tech. Rep., Lehrstuhl f¨ur Regelungstechnik, 2010.

[3] X. Dong, M. Yu, C. Liao, and W. Chen, “Rapid control prototyping development of vehicle semi-active control

scheme,” 2007.

[4] R. Zatrepalek, “Using FPGAs to solve tough DSP design challenges deciding between traditional DSP and FPGA,”

2012.

[5] D. Nenni, “A brief history of FPGAs,” 2012.

[6] S. Eligar and R. M. Banakar, “A model based approach for design of semiactive suspension using variable structure

control,” International Journal of Technical Research and Applications, pp. 2320–8163, 2014.

[7] G. Frantz and R. Simar, “Comparing fixed and floating point DSPs,” Texas Instruments, Dallas, TX, USA, 2004.

[8] S. Eligar and R. M. Banakar, “Optimization of control algorithm for semi-active suspension system,” International

Conference on Intelligent Computing and Sustainable System, 2018.

[9] K. K. Parhi, “VLSI digital signal processing systems: design and implementation,” John Wiley & Sons, 2007.

